perm filename LISPX.LSP[F81,JMC] blob
sn#629489 filedate 1981-12-07 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 proof?
C00009 00003
C00011 ENDMK
C⊗;
proof?
* LISPX started.
*
*
*
*
*
*
*
*
*
*
*
* 12. ∀U.SEXP U
ctxt: (1 11) deps: NIL
* 13. ∀X U.LISTP CONS(X,U)
ctxt: (1 2 6 10) deps: NIL
* 14. ∀X U.LISTP X:U
ctxt: (1 2 7 10) deps: NIL
* 15. ∀U.NULL U≡U=NNIL
ctxt: (1 5 9) deps: NIL
* 16. ∀X U.¬NULL CONS(X,U)
ctxt: (1 2 6 9) deps: NIL
* 17. ∀X U.¬NULL X:U
ctxt: (1 2 7 9) deps: NIL
* 18. ∀X U.CAR CONS(X,U)=X
ctxt: (1 2 6 8) deps: NIL
* 19. ∀X U.CAR (X:U)=X
ctxt: (1 2 7 8) deps: NIL
* 20. ∀X U.CDR CONS(X,U)=U
ctxt: (1 2 6 8) deps: NIL
* 21. ∀X U.CDR (X:U)=U
ctxt: (1 2 7 8) deps: NIL
* 22. ∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(CONS(X,U)))⊃(∀U.PHI(U))
ctxt: (1 2 4 5 6) deps: NIL
* compute-type: PHI does not apply in PHI(X,:,U)
in the current context PHI has type GROUND→TRUTHVAL
*
* 24. ∀U V.LISTP U*V
ctxt: (1 10 23) deps: NIL
* 25. ∀U V.U*V=IF NULL U THEN V ELSE CONS(CAR U,CDR U*V)
ctxt: (1 6 8 9 23) deps: NIL
* 26. ∀U V.U*V=IF NULL U THEN V ELSE CAR U:(CDR U*V)
ctxt: (1 7 8 9 23) deps: NIL
*
*
* 29. ∀X.LISTP LIST(X)
ctxt: (2 10 28) deps: NIL
* 30. ∀X.LIST(X)=CONS(X,NNIL)
ctxt: (2 5 6 28) deps: NIL
* 31. ∀X Y.LISTP LIST(X,Y)
ctxt: (2 10 28) deps: NIL
* 32. ∀X Y.LIST(X,Y)=CONS(X,LIST(Y))
ctxt: (2 6 28) deps: NIL
* 33. ∀X Y Z.LISTP LIST(X,Y,Z)
ctxt: (2 10 28) deps: NIL
* 34. ∀X Y Z.LIST(X,Y,Z)=CONS(X,LIST(Y,Z))
ctxt: (2 6 28) deps: NIL
* 35. ∀U.LISTP REVERSE U
ctxt: (1 10 27) deps: NIL
* 36. ∀U.REVERSE U=IF NULL U THEN NNIL ELSE REVERSE (CDR U)*LIST(CAR U)
ctxt: (1 5 8 9 23 27 28) deps: NIL
* 37. ∀U V W.(U*V)*W=U*(V*W)
ctxt: (1 23) deps: NIL
* 38. ∀X U V.CONS(X,U*V)=CONS(X,U)*V
ctxt: (1 2 6 23) deps: NIL
* 39. ∀U V.REVERSE (U*V)=REVERSE V*REVERSE U
ctxt: (1 23 27) deps: NIL
*
;;; lispx.lsp[f81,jmc] ekl axioms for lisp
(proof lispx)
(DECL (U u0 u1 u2 u3 v v0 v1 v2 v3 W w0 w1 w2 w3) |ground| variable listp)
(DECL (X Y Z) |GROUND| VARIABLE sEXP)
(DECL (A B C) |GROUND| VARIABLE)
(DECL (PHI) |GROUND→TRUTHVAL| VARIABLE)
(DECL (NNIL) |GROUND| CONsTANT LIsTp)
(DECL (CONs) |GROUND⊗GROUND→GROUND| CONsTANT)
(DECL (:) |GROUND⊗GROUND→GROUND| CONsTANT NIL INFIX 850)
(DECL (CAR CDR) |GROUND→GROUND| CONsTANT nil unary 950)
(DECL (NULL) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(DECL (LIsTp) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(DECL (sEXP) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(AXIOM |∀U.sEXP U |)
(AXIOM |∀X U.LISTP CONS(X,U)|)
(AXIOM |∀X U.LISTP X:U |)
(AXIOM |∀U.NULL U ≡ U=NNIL|)
(AXIOM |∀X U.¬NULL CONs(X,U)|)
(AXIOM |∀X U.¬NULL X:U|)
(AXIOM |∀X U.CAR CONs(X,U) =X|)
(AXIOM |∀X U.CAR (X : U) = X|)
(AXIOM |∀X U.CDR CONs(X,U) = U|)
(AXIOM |∀X U.CDR (X:U) = U|)
(AXIOM |∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(CONs(X,U)))⊃(∀U.PHI(U))|)
(AXIOM |∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(X:U))⊃(∀U.PHI(U))|)
;;; Common defined functions
(DECL (*) |GROUND⊗GROUND→GROUND| CONsTANT NIL INFIX 840)
(axiom |∀u v.listp(u*v)|)
(AXIOM |∀U V.(U*V)=IF NULL(U) THEN V ELsE CONs(CAR(U),CDR(U)*V)|)
(AXIOM |∀U V.(U*V)=IF NULL(U) THEN V ELsE CAR U : (CDR U *V)|)
(decl (reverse) |ground→ground| constant nil unary 950)
(decl list |ground* → ground| functional)
(axiom |∀x.listp(list(x))|)
(axiom |∀x.list(x) = cons(x,nnil)|)
(axiom |∀x y.listp(list(x,y))|)
(axiom |∀x y.list(x,y) = cons(x,list(y))|)
(axiom |∀x y z.listp(list(x,y,z))|)
(axiom |∀x y z.list(x,y,z) = cons(x,list(y,z))|)
(axiom |∀u.listp(reverse(u))|)
(axiom |∀u.reverse(u) = if null(u) then nnil
else reverse(cdr(u)) * list(car(u))|)
;;; theorems taken as axioms for further proofs
(axiom |∀u v w.(u*v)*w = u*(v*w)|)
(axiom |∀x u v.cons(x,u*v) = cons(x,u)*v|)
(axiom |∀u v.reverse(u*v) = reverse v * reverse u|)